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Exploiting Structure Periodicity and Symmetry in
Capacitance Calculations for Three-Dimensional

Multiconductor Systems

RUEY-BEEI WU AND LEON L. WU

A/mts-acf —The structure periodicity and symmetry usually encountered

in the design and packaging of integrated circuits are utilized to dramati-

cally alleviate the computation cost in the capacitance calculations for

three-dimensional multiconductor systems by the integral equation method.

For periodic structures, the region of unknowns is “reduced to the base

period by employing a modified Green’s function which circumvents the

Peridlcity singularity. For the stroctnres with s orthogonal planes of

symmetry, where s =1, 2, or 3, ‘the region of unknowns is reduced to 1/2’

of the originaf whole space by the help of even- and odd-mode decomposi-

tion techniques. Both algorithms are embedded into a general three-dimen-

siorraf capacitance calculation program by which a numerical calculation

for the via capacitance io a rnultilayer ceramic environment is presented

and compared with the experimental measurements.

I. INTRODUCTION

T HE ADVENT OF smaller and denser integrated cir-

cuits and packages always leads to very large and

complex systems with extremely small physical dimen-,

sions. The stray and interconnection capacitances which

once were insignificant in large discrete components now

become crucial elements in the modeling and computer-

aided electric analysis for high-performance systems [1].

Several methods have been proposed to deal with the

capacitance calculations for three-dimensional multicon-

ductor systems, such as the finite element method (FEM)

[2] and the integral equation method (IEM) [3]-[7]. Both

methods employ a large number of unknowns to ap-

proximate, for FEM, the potential distribution in the space

surrounding the conductors or, for IEM, the charge distri-

bution on the conductor surfaces. In other words, FEM

models the three-dimensional space while IEM models the

two-dimensional surfaces. FEM is advantageous for cases

where the space is in a greatly varying or complex inhorno-

geneous environment. However, for most practical struc-

tures where the environment is homogeneous or at most

has layered inhomogeneity, IEM is much more efficient

and thus will be considered here.

Together with a suitable discretization procedure, IEM

leads to the numerical solution of a matrix equation for

which the required storage and computation time is pro-
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portional to the square and cubic of the number of un-

knowns, respectively. The number of unknowns which

represent the two-dimensional surface charge increases very

rapidly as the geometry becomes more complicated. Hence,

attemp~$ ‘of IEM for practical structures are usually aban-

doned because either the amount of storage required is

simply not available on any mac’hine or the computation

time required cannot be afforded.

For~unately, the high level of integration in the present

technology usually exhibits symmetry and periodicity in

the integrated circuits and packages. By taking full ad-

vantage of structure periodicity and symmetry in these

cases, the methods proposed here can considerably reduce

the required computer storage and computation time

without sacrificing numerical accuracy. With the reduction

of computation time and especially storage, it becomes

possible to analyze more complicated integrated circuits

and packages.

For periodic structures, the most straightforward but

time consuming method takes several periods into consid-

eration and neglects the effects from farther periods. After

solving the charge distribution in these periods, the per-

period capacitance can be found from the solution of the

central period which is least influenced by the artificially

chosen ends. However, recognizing that the charge distri-

bution in the whole structure is periodic, a better method

sums up the contributions from all the periods and only

calls for the central base period 18]. Since this summation

tends to infinity, the method includes only a finite number

of summation terms by truncating the effects from farther

periods but still worries if the number is large enough to

ensure a convergent result. In this paper, a novel approach

is proposed in Section II to circumvent this periodicity

singularity. The effects from all the periods can be prop-

erly included and the results will be more accurate.

For symmetric structures, a purely mathematical ap-

proach has been proposed to reduce the computation

required in the matrix inversion [9]. However, the simplifi-

cation calls for the whole original matrix and the operation

is rather complicated. A better modal decomposition tech-

nique is thus proposed in Section III, which gives an

equivalent and more physical insight. This technique oper-

ates in a condensed matrix directly so that the operation is

simpler and the required memory storage is smaller.
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Section IV describes the basic procedure employed in

the numerical analysis and some computation considera-

tions taken in the program setup. Several examples are

then included in Section V to demonstrate and verify the

significant features of this program. Also, the program is

applied to analyze the via capacitance in a practical

packaging structure and the results are compared with

experimental measurements. Finally, some brief discus-

sions and conclusions are presented in Section VI.

11. CAPACITANCES IN PERIODIC STRUCTURES

The integral equation method employed in the capaci-

tance calculations for three-dimensional multiconductor

systems can be formulated as follows. Let the structure

consist of &l conductors, which are denoted & (m =

1,2,. . . , M). Similarly, let the imposed voltage and stored

total charge on the mth conductor be V~ and Q~, respec-

tively. Then the charge density p(r) on conductor surfaces

satisfies the integral equation

~~1 ~m% r’)p(r’) dr-’= v(.) = v.

forr=$, n=l,2,. ... M. (1)

here, the Green’s function G(r, r’) = l/4mlr – r’1 when all

these conductors are in a homogeneous medium of dielec-

tric constant 6. For structures with several layered dielec-

tric regions, the Green’s function is much more com-

plicated [4]. Nevertheless, the simplifications proposed in

this paper can be applied similarly.

By a suitable discretization procedure and the solution

of a matrix equation [3]–[7], the unknown charge density

and thus the total charge induced on each conductor can

be approximately evaluated. Mathematically, the total

charges are related to the voltages by

Q.=~p(r)dr= f c(m,n)”~
. ~=1

form= 1,2,, M. (2)

Here, the coefficient C(m, n), called the short-circuit

capacitance [5], is the total charge induced on the m th

conductor when the n th conductor has a unit voltage

imposed while all the others are grounded.

An equivalent but more common circuit capacitance,

called the direct capacitance [3] or two-terminal capaci-

tance [5]. can be obtained from the short-circuit capaci-

tance by

C~(m, m)= ~ C(m, n) (3)
~=1

and

C~(m, n)=– C(m, rz) form+iz.

Here, the diagonal term C~(m, m ) represents the self-

capacitance of the m th conductor to the ground at infin-

ity; while the off-diagonal term Cd( m, n) represents the

mutual capacitance between the two conductors m and n.
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Fig. 1. A typical structure periodic m the z direction with a period p

Now, let us consider a typical periodical structure as

shown in Fig. 1. Without loss of generality, the structure is

assumed to be periodic along the z axis with a period of p.

When the conductors in different periods have the same

voltages imposed, the charge density distribution in the

whole structure is periodic, i.e., p ( r + p?) = p ( r). There-

fore, the suitable Green’s function in (1) should include the

contributions from all the periods, i.e.,

GP(r, r’) = ~ G(r, r’+kp2) (4)
k=–m

while only the unknown charge density in the central base

(k= O) period is required to be solved.

However, the Green’s function Gp is improper since the

term G(r, r’ + kp~) tends to (4mplk[)-1 for large Ikl,

which makes the series in (4) divergent. Hence, it is ad-

vantageous to define instead a modified Green’s function:

($P(r, r’) =G(r, r’)

[

1
+ ~ G(r, r’+/cpi) +G(r, r’-/cp2)— — I2vcpk “

(5)

k=l

Now, the series (5) is convergent since the bracket in (5) is

proportional to k-3 for large k,

Substituting (5) into (1) gives

(6)

where the constant

It should be noted that 22 is improper since the series is

divergent. This in turn makes a and thus p(r’) in (6)

infinite unless the sum of total charges

~ ~p(r)dr= f Qm=O. (7)
m=l & m=l
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In other words, for periodic structures, there is an ad-

ditional charge constraint (7), i.e., the sum of total charges

inside one period must be zero. Under this constraint, the

constant a can be finite, but not necessarily zero.

The conventional capacitance calculation procedure can

be applied similarly except that the modified Green’s

function ~p should be employed while the total charge is

expressed as

Qm= i ~(m,n)(vn-a) (8)
~=1

where ~( m, n) is the modified capacitance. To find the

proper capacitance C(m, n), the parameter a must be

solved. By the constraint (7), it is found that

a= ~ (D.\A).V~ (9)
n-1

and

Substituting (9) into (8), the short-circuit capacitance per

period is

C(m, n)=6(m, n)–(D~O.)/A. (lo)

Similarly, the two-terminal capacitance C~(nz, n) per

period can be obtained from C(m, n) by (3). It is noted

that the diagonal term CJ(m, m) is always zero for peri-

odic structures.

Since the summation term in the bracket of (5) has a

l/lc 3 dependence for large k, the series 8P converges but

still slowly. A rough estimate shows that about 100 terms

are required to converge the result into a relative error of

10”. To speed up the rate of convergence, the summation

term in the bracket of (5) can be expressed as

~,(r, r’)=G(r, r’+kpf) +G(r, r’–kp2)–(2mckp)-1

= {3[(r-r’).2]2- lr-r’12}/47rck3p3 +R. (11)

Here, the remainder R converges much faster since it has a

l/k 5 dependence for large k. The series of the first term

on the right-hand side of (11), which, however, is slowly

convergent, can be evaluated exactly since

ml

,:1$ = “ ‘1”2020563 “ “ “ “

By this simplification, it is noted that the same conver-

gence error of 10-4 can usually be achieved in about ten
terms.

III. CAPACITANCES IN SYMMETRIC STRUCTURES

The even- and odd-mode decomposition techniques are

generalized in this section to ease the capacitance calcula-

tions for multiconductor structures which contain s (s =1,

Fig. 2. A typical structure symmetric with respect to the x = O and
y = O planes. Here, conductors 3 and 4 are cross-symmetric, while
conductors 1 and 2 are open-symmetric,

2, or 3) orthogonal planes of symmetry. First, consider the

simplest case, where the structure has one plane of symme-

try, say the y = O plane. As shown in Fig. 2, there are four

conductors in the region y >0. The conductors which are

shorted with their image counteq]arts in the y <0 region

are called cross-symmetric conductors, e.g., conductors 3

and 4 in Fig. 2. Those which are separate from their image

counterparts, e.g., conductors 1 and 2 in Fig. 2, are called

open-symmetric conductors.

To be more general, assume there are K conductors in

the region y >0. The open-symmetric conductors are

numbered as the first L conductcm-s, denoted as conductor

z+ in the y >0 region and conductor i_ in the y -= O

region (i=l,2,. . . , L). While the cross-symmetric conduc-

tors are numbered as the (L. + l)st, (L+ 2)nd, . . . . Kth

conductors. In fact, there are L + K conductors in the

whole space. However, by means of the modal decomposi-

tion technique, only the capacita rices between the K con-

ductors in y >0 region need be solved to find the capaci-

tances between all these K + L conductors.

To facilitate the analysis, let us define three vectors for

the total charges, i.e., Q+-[QI+, Q2,,. co, QL+ ] and Q_ =

[Ql_7Q2_>” “ ‘ , QL. 1 for the open-symmetric conductors in
the y >0 and y <0 regions, respectively; in addition,

Q.= [QL+DQL+2>” “ “, QK] for the cross-symmetric con-
ductors. Accordingly, the voltages imposed on all the con-

ductors are grouped into three voltage vectors: V+, V_,

and VC.Then, the desired short-circuit capacitance matrix

can be written as

where, due to symmetry, the partitioned capacitance

matrices &ould >atisf y ~++ = ~__, ~+. = ~.. = ?C+ =

~C_, and C.+. = C_..

When the imposed voltage distribution is even-symmet-

ric, i.e., V+ = V_, the charge distribution is even- symmet-
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ric also, i.e., Q+ = Q_. Only the unknown charge density

in the y >0 region is necessary since the charge density on

the image counterparts in the y <0 region is the same. The

governing integral equation is thus similar to (1) except

that the Green’s function G(r, r’) is replaced by

Ge(r, r’) =G(r, r’)+ G(r, ?’) (13)

where ~’ is the image of r’ with respect to the plane of

symmetry. For example, ~’= (x, – y, z) when r’= (x, y, z)

and the y = O plane is the plane of symmetry. Note that

only the structure in the y >0 region is required; i.e., both

r and r’ are in the y >0 region.

The charge density in the y >0 region and thus the

short-circuit capacitance matrix can be obtained following

a similar solution procedure in deriving (2). Since the

charge and voltage distributions are even-symmetric in this

case, the matrix can be called the even-mode short-circuit

capacitance matrix. By the relations that V+ = V. and

Q+= Q_, this matrix can also be expressed from (12) as

[1[Q+
Qc/2 = ‘+;:- :;2][H=WH

(14)

Here, the vector Q, is divided by two since the charge in

the y >0 region is half of that in the whole region for

cross-symmetric conductors.

Similarly, each conductor and its image counterpart

have opposite charge distributions, i.e., Q.= – Q+. when

the imposed voltages are opposite, i.e., V_ = – V+. Here,

the plane of symmetry is equivalent to a grounded plane,

which implies that all the cross-symmetric conductors are

grounded, i.e., ~ = O. The solution approach is the same as

that for the even-symmetric case except that the Green’s

function now becomes

Go(r, r’)= G(r, r’)– G(r, y’). (15)

Here, the subscript o stands for the odd-symmetric case, in

contrast to the subscript e in (13) for the even-symmetric

case.

The resultant matrix is now called the odd-mode short-

circuit capacitance matrix, which can be expressed as

(Q+)= (~++-~+-)@+)=(c)W’+). (16)

Here, the relations V.= – V+, Q_= – Q+, and VC= O are

substituted into (12).
By choosing the suitable Green’s functions (13) and (15).

only the unknown charge density in the y >0 region is

required to obtain (14) and (16), respectively. However, the

whole short-circuit capacitance matrix in (12) can be

achieved accordingly. Let C.( i, ~) and Co( i, j) be the

even- and odd-mode capacitances between two conductors

i and j in the y >0 region. The equivalent capacitances in

the whole space can be solved as follows. When both

conductors i and j are cross-symmetric,

C(z, ~)=2Ce(i, ~). (17a)

When one conductor, say the ith, is cross-symmetric while

the other, say the jth, is open-symmetric,

C’(i, ~+)= C(i, ~_)= C’e(i, ~). (17b)

When both conductors i and j are open-symmetric,

C(i+, j+) =C(i_, j_) =[C@(i, j)+ Co(i, j)]~2

C(i_, j+) =C’(i+, j-) =[Ce(i, j)– Co(i, j)]/2. (17fJ)

This approach can be extended for the structures with

two or three orthogonal planes of symmetry. The basic

algorithm can be briefly described by a simple structure

with two orthogonal planes of symmetry, say, the x = O

and y = O planes. By first assuming that the x = O plane is

even-symmetric, the structure of interest is in the half-space

with x >0. Now, the y = O plane is the plane of symmetry

in the “new” half-space. The aforementioned modal de-

composition technique can be applied similarly except

that the Green’s function G( r, r’) should be substituted

by the Green’s function in the “new” half-space, i.e.,

G(x, y, z; x’, y’, z’)+ G(x, y, ~; – x’, y’, z’). By solving the
unknown charge density for the two cases where the y = O

plane is even- and odd-symmetric, the resultant short-cir-

cuit capacitance matrix in the “new” half-space can be

obtained by employing relation (17). This matrix is now

the even-mode capacitance matrix E, with respect to the

x = O plane in the original whole space.

Similarly, the odd-mode capacitance matrix ~0 can be

obtained by first assuming that the x = O plane is odd-

symmetric. By applying (17) again, the desir~d shor~cir-

cuit capacitance matrix can be obtained from ?. and CO. It

is noted that this approach requires only the charge density

in the x >0 and y >0 region, which means one quarter of

the original total unknowns. However, four cases must be

solved, corresponding to the assumptions that each of the

x = O and y = O planes is either even- or odd-symmetric.

Roughly speaking, the numerical solution for a matrix

equation of N unknowns calls for N ~/2 memory storage.

The computation time, if taking into account the computa-

tion of matrix elements, is proportional to N ‘(2 < y < 3).

For cases with small N, y = 2 since the computation of

matrix elements dominates: while y = 3 for cases with

large N whence the solution of matrix equation dominates.

Hence this approach, when applied to structures with two

orthogonal planes of symmetry, reduces the number of

unknowns by a factor of 4, and thus the memory storage

by 16. Since it is usually necessary to solve four cases,

corresponding to different assumptions on the x = O and

y = O planes, the computation time to obtain the final

C( m, n) in the whole space is reduced by a factor of

(16-64):4 = 4-16.

For structures with three orthogonal planes of symme=

try, the solution approach is similar. The reduction in

computation cost, however, is tremendous, i.e., 64 times in

memory storage and 8 –64 times in computation time.

IV. SOLUTION APPROACH

Regardless of whether the structure is periodic. symmet-

ric, or neither, the capacitance calculation requires a solu-

tion of the unknown surface charge density from the
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integral equation like (l), and then a relation in terms of

short-circuit capacitances like (2). The basic procedure and

some related numerical considerations are briefly de-

scribed as follows. “First, each conductor is divided into

small cells. The surface charge density may be different

from one cell to another but is assumed to be a constant

inside the same cell. Theoretically, a better solution will be

achieved by a finer discretization. However, it is always

accompanied by an enormous increase in the number of

unknowns and thus the computation cost. A good al-

gorithm which can achieve reasonable accuracy with the

least discretization is desired.

Let the surface of the nzth conductor, Sm, be partitioned

into N~ cells, i.e., S~,(j = 1,2,. ... N~). Denoting by q~,

the unknown total charge on the cell S~,, the integral

equation (1) becomes

for r G S’n (18)

where lS~ 1denotes the area of the cell S~,. It is noted that

the Gree~s function here should be replaced by ~p for

periodic structures and by G, or GO for symmetric struc-

tures.

It is crucial to calculate the integral in (18) accurately

and efficiently. The closed-form formula has been derived

for the cells with rectangular [3] or triangular [6] shape.

The triangular cell is more general in modeling arbitrary

geometry, but the involved computation is more time-con-

suming. For practical packaging structures, rectangular

cells suit as well [4], [5] and are employed here.
Two methods have been proposed to solve the un-

knowns q~ in (18). The simpler, collocation method [3],

[6] matche~ (18) at the center of each cell, while the

Galerkin method [4] matches the average of (18) inside the

same cell. It can be shown that the Galerkin method

achieves a variational solution [10]; i.e., a first-order error

of charge distribution results in a much smaller second-

order error of resultant capacitances. Hence, though with a

little extra computation complexity, the Galerkin method

usually achieves much better solutions.

Applying Galerkin’s method to the integral in (18) cell

by cell, we can achieve a system of simultaneous linear

equations for unknown charges q~,, i.e.,

M ~.

~ ~ Pn,m,.qm, = Vn,
~=11=1

2=1,2,... ,Nn; n=l,2,. o”, M (19)

where

P 1 ~ ~ “G(r>r’)drdr’
“w’ = 1s,1” M,l S“, Sm,

It is noted ,by inspection that the coefficient matrix com-

posed of Pn,m, is symmetric, which makes the solution of

matrix equation (19) easier.

A closed-form formula for the coefficient P. ~ can be

derived when the two rectangular cells S., and’ S~, are

either parallel or orthogonal [4]. It may happen in practical

structures that the orientation between some cells is neither

parallel nor orthogonal. For example, the two cells along

the periphery of a circular cylinder always have more

general orientations. In those cases, the inner integral is

evaluated by the closed-form expression while the outer

integral is approximated by the Gaussian quadrature. A

higher order quadrature formula should be employed to

ensure accuracy for very close cel k. In most cases where

the cells are not very close, a rough formula which requires

less computation is sufficient.

A Fortran program is thus implemented on the

IBM/3090 mainframe computer LO calculate the capaci-

tances for three-dimensional multiconductor systems. To

divide the conductor surfaces into rectangular cells, the

program first requests a data input for the conductor

geometries and the discretization sizes. Many complicated

geometries can be partitioned into several rectangular basic

boxes. It is thus easier to specify the geometries by de-

fining the coordinates of the boxes and specifying that the

surfaces joining two boxes are charge-free [5]. If a surface

includes the edge, a nonuniform d wision should be chosen

to achieve a good accuracy [4].

For periodic and/or symmetric structures, the data in-

put for conductor geometry is greatly simplified since only

part of the whole structure is actually required in solution.

When the structure is periodic, the program requests only

the part of geometry in one periocl of the structure instead

of the whole geometry in many periods. For symmetric

structures with s planes of symmetry (s =1, 2, or 3), only

1/2’ of the whole geometry is necessary.

The Galerkin method is then applied to obtain a matrix

equation, which is solved by the Gaussian elimination

method to find the unknown charge density and thus the

capacitances as expressed in (2). If the system has periodic-

ity or symmetry, the simplifications described in Section II

or HI should be imposed on these capacitances to obtain

the desired capacitances.

V. NUMERICAL EXAMPLES

To demonstrate the significant features of this program,

several examples are presented in this section. The first

example considers the average capacitance per centimeter

in a coaxial transmission line wlhere the two conductors

have a radius ratio of two and the inside region is free

space. This example is chosen because its solution is well

known, enabling us to gain insight into the rate of conver-

gence and the necessity of the proposed simplification for

periodic structures.

To analyze this simple structure, one may assume that

the cable is of finite length and employs the conventional

three-dimensional capacitance calculation. Shown in Fig. 3
is the resultant average capacitance per centimeter versus

the length of the coaxial cable. As the length increases, it

tends to the exact two-dimensional capacitance, which, as

shown by the dotted line in tlhe figure, is 2 m /ln 2 =

0.80262 . . . pF/cm. However, the rate of convergence is

rather slow. The relative error is still greater than 3 per-
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Fig, 3. Average capacitance per centimeter versus length for a coaxial

cable. Dotted curve denotes the exact result as the length tends to

infinity.

cent, even when the ratio of length to outer radius is as

large as 10.

It is noted that any two-dimensional structure is peri-

odic along the third dimension with a period p, which can

be assumed to have any positive value. Hence, one may

also employ the three-dimensional method together with

the periodicity simplification to handle two-dimensional

capacitance calculations. By arbitrarily choosing a period,

sayp =2, the program obtains the result 0.80259 pF/cm,

which is very close to the exact solution. This at least

validates the simplification algorithm proposed here for

periodic structures.

As shown in Fig. 3, the discrepancy between the finite-

length and the infinite-length results depends on the ratio

of the longitudinal length to the transversal size. Since a

two-dimensional transmission line can be considered a

periodic structure with arbitrary period, the number of

periods inside a fixed length being arbitrary. Therefore, it

is very difficult for the truncation approach [8] to achieve a

meaningful criterion for a number of periods which will be

sufficient to ensure a convergent result. The modified

Green’s function together with the associated algorithm

proposed here includes the effects from all the periods and

thus can always achieve better results.

The second example considers a symmetric structure

with eight cubic conductors of size 1 cm centered at

(.xO, .YO,zO) in free space where XO, YO and ZO are either
+ 1 or – 1 cm. The surfaces of the conductors are parallel

to the coordinate axes. Therefore, the structure has three

planes of symmetry. By exploring the structure symmetry,

only the structure in one eighth of the whole space, i.e., the
conductor centered at (1,1, l), is required in the solution.

When all three planes of symmetry are assumed even-sym-

metric, the resultant even-mode capacitance is 0.2645 pF.

Similarly, when two, one, or none of the three planes are

even-symmetric, the capacitances are, respectively, 0.8647,

1.201, and 1.417 pF. By relations (17) and (3), the two-

terminal capacitances between all eight conductors can be

obtained. The self-capacitance is 0.2645 pF, while the

mutual capacitances between adjacent, face-diagonal, and

cube-diagonal conductors are 0.1860, 0.04804, and 0.01790

pF, respectively. Here, each side of the conductor is di-

vided into four segments; i.e., the number of unknowns is

un, t,mil

+x
Er.9/. +74747+

ml T
20

1(’m..--, 1

Mxy Mxy~

+814+20+ E E
s 5 5
HLLHLLH
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; it!
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(a) (b)

Fig, 4. A practical packaging structure consisting of via conductor,
mesh planes, and x and y lines. (a) Top view. (b) Side view.

6 x4X4= 96. The computation time required to find the

final solution is about 7 seconds.

On the other hand, the same program is also employed

to solve the original structure without utilizing the struc-

ture symmetry. Keeping the same discretization size, the

two-terminal capacitances between all eight conductors are

exactly the same as those obtained before. This again

validates the suitability of the proposed simplification al-

gorithm for symmetric structures. However, the number of

unknowns is 768 while the computation time is 144 sec-

onds now. Thk means that exploiting structure symmetry

here can result in a reduction in memory storage and

computation time by 64 and 20 times, respectively.

Finally, consider a practical packaging structure made

of multilayer ceramic for high-performance computers [11].

The structure includes many perforated mesh planes inside

which the x- and y-directed lines are designed for the

signal transmission between integrated-circuit chips. In

addition, many via conductors are built through the holes

in mesh planes to serve as the z-directed signal or power

connection between different layers.

For practical computer systems where the rise time of

the signal is about 1 ns, the structure size is much smaller

than the signal wavelength of interest. Some characteris-

tics, e.g., the impedance of a via conductor and the loading

effect of the x and y lines, are reflected from the average

capacitance between the via conductor and the grounded

mesh planes. To analyze this problem, we consider a
simplified structure as shown in Fig. 4 where (a) is the top

view and (b) is the side view. The structure is assumed to

be periodic in the z direction but truncated in the trans-

verse direction. The mesh planes and x and y lines are

shorted together and considered as the ground. The rela-

tive dielectric constant of the surrounding material is 9.4.

Since the structure is periodic in the z direction as well

as symmetric with respect to both the x = O and y = O

planes, we only need to solve the one-period structure in

the x >0 and y >0 region, which is modeled by 256 cells

as shown in Fig. 5. The via capacitance can now be

obtained directly from the even-mode capacitance since
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Fig. 5. Cells employed to model the structure (see Fig. 4) inside one

period and in the x >0, y >0 region.
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Fig. 6. Average capacitance between via conductor and mesh plane
versus via conductor radius. Solid and dotted curves correspond to the

cases where the x and y lines are absent and present, respectively.
Triangular marks denote the measurement results.

both the conductors are cross-symmetric. The via capaci-

tance versus the via conductor radius is shown by the

dotted curve in Fig. 6, for which the computation time is

about 44 seconds for a radius. As the radius increases, the

distance between via conductor and mesh planes decreases

and thus the capacitance increases significantly.

It is well known that the capacitance per unit length

remains invariant when the structure is scaled by a con-

stant factor. Based on this idea, a 150X scaled test vehicle

including M periods (M < 7) was constructed to measure

the capacitance of a via conductor with respect to the

grounded mesh planes and x and y lines. To cancel the

edge effect from both ends due to finite M periods, two

measurements with different M ‘s, say M = 7 and M = 5,
are executed and subtracted to give the average capaci-

tance per unit length [12]. The results are shown by the
triangular marks in the figure. It is found that the compu-

tational and experimental results compare favorably.

Now, consider the via capacitance without the loading

effect of the x and y lines. When the x and y lines are

absent, the structure is symmetric along the z direction

also. Then, only the half-period in the z >0 region need be

modeled. The number of unknowns is reduced to 92 and

the computation time to 7 seconds. The resultant via

capacitance is shown by the solid curve in Fig. 6, which is

again consistent with the measurements. As compared with

the case when the x and y Iirles are present, the via

capacitance is reduced more significantly for larger via

conductor radius. The relative reduction is 10 percent

when the radius ratio is 0.1, while it becomes 40 percent

when the radius ratio is increased to 0.85.

VI. CONCLUSIONS ANIJ DISCUSSIONS

A novel approach characterized by its capability to

utilize structure periodicity and symmetry is proposed to

deal with the capacitance calculations for three-dimen-

sional multiconductor systems. The modified Green’s func-

tion is proposed to circumvent the singularity due to

infinite periods. In the meantime, it is shown that the sum

of total charges in a periodic structure should be zero. By

this approach, only the conductor geometry in one period

of the structure ne,ed be modeled and solved while the

effects from all the periods are included properly.

On the other hand, the idea of ~.he modal decomposition

technique is extended for multiconductor structures with

several orthogonal planes of symmetry. Corresponding to

each plane of symmetry, the structure is halved to find

even- and odd-mode capacitances by assuming that the

voltage and charge distributions in two half-spaces are

even- and odd-symmetric, respectively. A general al-

gorithm relating the original capacitances to the even- and

odd-mode capacitances is derived for the multiconductor

cases. For structures with several planes of symmetry, the

procedure can be applied directly by repeating the al-

gorithm several times. The geometry is easier to specify in

data input and the computation cost is greatly reduced. In

addition, fewer unknowns and thus fewer operations are

involved, so that the roundoff error during numerical

computation is reduced.

Combined with the two simplification algorithms for

periodic and symmetric structures, the program is very

general for analyzing the capacitances for practical packag-

ing structures, such as the capacitance between two perfo-

rated mesh planes and the capacitance between two signal

lines in the presence of mesh planes and crossing lines.

However, it cannot handle structures with inhomogeneous

material in its present form. In those cases, the material

can be replaced with free space by placing unknown charges

along the material boundary [7], but the simplification

formula for periodic structures should be modified sli&tly.

It should be emphasized that in this paper the conduc-

tors in different periods for periodic structures are as-

sumed shorted together; i.e., the voltage distribution is

identical for all the periods. It is not uncommon for the
conductors in different periods to be discrete and to have

different voltages imposed. In those cases, it is sometimes

important to calculate the capacitances between two con-

ductors in different periods. A novel method to solve this

difficulty is in progress and will be presented in the near

future.



1318

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 9, SEPTEMBER1988

A. E. Ruehli, “Survey of computer-aided electrical analysis of

integrated circuit interconnection,” IBMJ. Res. Develop., vol. 23,
pp. 626-639, Nov. 1979.
P. E, Cottrelland E.M. Buturla, ’’VLSI wiring capacitance,’’1BM

J. Res. Develop., vol. 29, pp.277-288, May 1985.
P. D. Patel, ``Calculation ofcapacitmce coefficients forasystemof
irregular finite conductors on a dielectric sheet,” IEEE Trans.
Microwave Theory Tecl-r., vol. MTT-19, pp. 862–869, Nov. 1971.
A. E. Ruehli and P, A. Brennan, “Efficient capacitance calculations

forthree-dimensiond multiconductor system, ''lEEE Trans. Mzcro-
wave Theory Tech., vol. MTT-21, pp. 76–82, Feb. 1973,

A. E. Ruehli and P. A. Brennan, “Capacitance models for in-
tegrated circuit metallization wires,” IEEEJ, Solid-State Circuits,

vol. SC-10, pp. 530–536, Dec. 1975.

S. M. Rae, A. W. Glisson, D. R. Wilton, and B. S. Vidula, “A

simple numerical solution procedure for statics problems involving
arbitrary-shaped surfaces,” IEEE Trans. Antennas Propagat., vol.
AP-27, pp. 604–608, Sept. 1979,
S. M. Rae, T. K. Sarker, and R. F. Barrington, “Thee lectrostatic
field of conducting bodies in multiple dielectric media;’ IEEE
Trans. Microwave Theory Tech., vol. MTl-32, pp. 1441-1448, Nov.
1984.
H. C. Lee and H. D. Chai, “Integral point-matching method for

two-dimensional Laplace field problems with periodical bound-

aries,’’IBMJ. Res. Develop., vol. 24, pp.622-630, Sept. 1980.
W. T, Weeks, “Employings ymmetryi nelectricafp ackaginganaly-

sis,’’IBMJ. Res. Develop., voL23, pp.669-674, Nov. 1979.

R. F. Barrington, Field Compilation by Momem Methods. New

York: Macmillan, 1968.
B. T. Clark and Y. M. Hill, “IBM multichip multilayer ceramic
modules for LSI chips-Design for performance and density,”
IEEE Trans. Components, Hybrids, Manuf. TechnoI., voLCHMT-3,

pp. 89-93, Mar. 1980.

Experiment conducted by D.C. Diehlin Yorktown Heights, IBM,

*

Ruey-Beei Wu was born in Tainan, Taiwan, Re-
~ubfic of China. on October 27. 1957. He re-
~eived the B. S.E.E. degree from National Taiwan
University, Taipei, Taiwan, in 1979, and the
Ph.D. degree from the same university in 1985.

In 1982, he joined the faculty of the Depart-
ment of Electrical Engineering, National Taiwan

University, where he is now an Associate Profes-

sor. In 1986, he was a Visiting Scientist for one

year at the IBM General Technology Division
Laboratory, East Fishkill Facilitv, HopeWell

Junction, NY. He is involved in-research on numerical ~echnique for
electromagnetic and electrical analysis for computer packaging.

Leon L. Wn received the B.S. degree in electrical
engineering from National Taiwan University,

Taipei, Taiwan in 1962 and the Ph.D. degree,

also in electrical engineering, from Carnegie Mel-
lon University, Pittsburgh, PA, in 1968,

After his graduate work he joined the IBM
East FishkiIl Laboratory, where he worked on
silicon defect studies and on silicon device and
process modeling. In 1977, he started his work

on packaging modeling. Since then, he has been
involved in developing advanced packaging

schemes for higl-performance mainframe computers at IBM.


