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Exploiting Structure Periodicity and Symmetry in
Capacitance Calculations for Three-Dimensional
Multiconductor Systems

RUEY-BEEI WU anp LEON L. WU

Abstract —The structure periodicity and symmetry usually encountered
in the design and packaging of integrated circuits are utilized to dramati-
cally alleviate the computation cost in the capacitance calculations for
three-dimensional multiconductor systems by the integral equation method.
For periodic structures, the region of unknowns is reduced to the base
period by employing a modified Green’s function which circumvents the
periodicity singularity. For the structures with s orthogonal planes of
symmetry, where s =1, 2, or 3, the region of unknowns is reduced to 1,/2°
of the original whole space by the help of even- and odd-mode decomposi-
tion techniques. Both algorithms are embedded into a general three-dimen-
sional capacitance calculation program by which a numerical calculation
for the via capacitance in a multilayer ceramic environment is presented
and compared with the experimental measurements. ’

I. INTRODUCTION

HE ADVENT OF smaller and denser integrated cir-
cuits and packages always leads to very large and

complex systems with extremely small physical dimen-

sions. The stray and interconnection capacitances which
once were insignificant in large discrete components now
become crucial elements in the modeling and computer-
aided electric analysis for high-performance systems [1)].

Several methods have been proposed to deal with the
capacitance calculations for three-dimensional multicon-
ductor systems, such as the finite element method (FEM)
[2] and the integral equation method (IEM) [3]-{7]. Both
methods employ a large number of unknowns to ap-
proximate, for FEM, the potential distribution in the space
surrounding the conductors or, for IEM, the charge distri-
bution on the conductor surfaces. In other words, FEM
models the three-dimensional space while IEM models the
two-dimensional surfaces. FEM is advantageous for cases
where the space is in a greatly varying or complex inhomo-
geneous environment. However, for most practical struc-
tures where the environment is homogeneous or at most
has layered inhomogeneity, IEM is much more efficient
and thus will be considered here.

Together with a suitable discretization procedure, IEM
leads to the numerical solution of a matrix equation for
which the required storage and computation time is pro-
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portional to the square and cubic of the number of un-
knowns, respectively. The number of unknowns which -
represent the two-dimensional surface charge increases very
rapidly as the geometry becomes more complicated. Hence,
attempts of IEM for practical structures are usually aban-
doned because either the amount of storage required is
simply not available on any machine or the computation
time required cannot be afforded.

Fortunately, the high level of integration in the present
technology usually exhibits symmetry and periodicity in
the integrated circuits and packages. By taking full ad-
vantage of structure periodicity and symmetry in these
cases, the methods proposed here can considerably reduce
the required computer storage and computation time
without sacrificing numerical accuracy. With the reduction
of computation time and especially storage, it becomes
possible to analyze more complicated integrated circuits
and packages.

For periodic structures, the most straightforward but
time consuming method takes several periods into consid-
eration and neglects the effects from farther periods. After
solving the charge distribution in these periods, the per-
period capacitance can be found from the solution of the
central period which is least influenced by the artificially
chosen ends. However, recognizing that the charge distri-
bution in the whole structure is periodic, a better method
sums up the contributions from all the periods and only
calls for the central base period [8]. Since this summation
tends to infinity, the method includes only a finite number
of summation terms by truncating the effects from farther
periods but still worries if the number is large enough to
ensure a convergent result. In this paper, a novel approach
is proposed in Section II to circumvent this periodicity
singularity. The effects from all the periods can be prop-
erly included and the results will be more accurate.

For symmetric structures, a purely mathematical ap-
proach has been proposed to reduce the computation
required in the matrix inversion [9]. However, the simplifi-
cation calls for the whole original matrix and the operation
is rather complicated. A better modal decomposition tech-
nique is thus proposed in Secrion II, which gives an
equivalent and more physical insight. This technique oper-
ates in a condensed matrix directly so that the operation is
simpler and the required memory storage is smaller.
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Section IV describes the basic procedure employed in
the numerical analysis and some computation considera-
tions taken in the program setup. Several examples are
then included in Section V to demonstrate and verify the
significant features of this program. Also, the program is
applied to analyze the via capacitance in a practical
packaging structure and the results are compared with
experimental measurements. Finally, some brief discus-
sions and conclusions are presented in Section VL.

II. CAPACITANCES IN PERIODIC STRUCTURES

The integral equation method employed in the capaci-
tance calculations for three-dimensional multiconductor
systems can be formulated as follows. Let the structure
consist of M conductors, which are denoted S, (m=
1,2,- -+, M). Similarly, let the imposed voltage and stored
total charge on the mth conductor be V,, and Q,,, respec-
tively. Then the charge density p(r) on conductor surfaces
satisfies the integral equation

Y [ G(rr)p(r)dr=v(r) =Y,

m=1" S m

forresS,, n=12,---,M. (1)

here, the Green’s function G(r, ¥') =1/4me|r — r’| when all
these conductors are in a homogeneous medium of dielec-
tric constant €. For structures with several layered dielec-
tric regions, the Green’s function is much more com-
plicated [4]. Nevertheless, the simplifications proposed in
this paper can be applied similarly.

By a suitable discretization procedure and the solution
of a matrix equation [3]-[7], the unknown charge density
and thus the total charge induced on each conductor can
be approximately evaluated. Mathematically, the total
charges are related to the voltages by

M

Y. C(m,n)-V,

n=1

form=1,2,---. M.

0, = fS p(r)dr=
(2)

Here, the coefficient C(m,n), called the short-circuit
capacitance [5], 1s the total charge induced on the mth
conductor when the nth conductor has a unit voltage
imposed while all the others are grounded.

An equivalent but more common circuit capacitance,
called the direct capacitance [3] or two-terminal capaci-
tance [5]. can be obtained from the short-circuit capaci-
tance by

M
Cim,m)= 3 C(m.n)

n=1

(3)

and

C,(m.n)=-C(m,n) form=+n.

Here, the diagonal term C,(m,m) represents the self-
capacitance of the mth conductor to the ground at infin-
ity; while the off-diagonal term C,(m, n) represents the
mutual capacitance between the two conductors m and n.
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Fig. 1. A typical structure periodic n the = direction with a period p

Now, let us consider a typical periodical structure as
shown in Fig. 1. Without loss of generality, the structure is
assumed to be periodic along the z axis with a period of p.
When the conductors in different periods have the same
voltages imposed, the charge density distribution in the
whole structure is periodic, i.e., p(r+ pZ) = p(r). There-
fore, the suitable Green’s function in (1) should include the
contributions from all the periods, i.e.,

G,(r,r)= 3 G(r,r+kp?)

k=—o0

(4)

while only the unknown charge density in the central base
(k = 0) period is required to be solved.

However, the Green’s function G, is improper since the
term G(r,r'+ kp?) tends to (dmeplk|))~! for large |k|,
which makes the series in (4) divergent. Hence, it is ad-
vantageous to define instead a modified Green’s function:

G,(r.r)=G(r.r)

+ ) {G(r,r’%—kp2)+G(r,r’—kp2)— (5)
k=1

2mepk |

Now, the series (5) is convergent since the bracket in (5) is
proportional to k=2 for large k.
Substituting (5) into (1) gives

Zjlfsép(r,r’)m(r’) ar'=v(r)—a (6)

where the constant

M
aE-(mz’l‘[Smp(r’) dr') ="

M
Lo
m=1

and

2:

M8

(2mepk) ™.

k=1

It should be noted that = is improper since the series is
divergent. Thjs in turn makes a and thus p(r’) in (6)
infinite unless the sum of total charges

M M
) fsp(r)dr= X 0,=0. (7)
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In other words, for periodic structures, there is an ad-
ditional charge constraint (7), i.e., the sum of total charges
inside one period must be zero. Under this constraint, the
constant « can be finite, but not necessarily zero.

The conventional capacitance calculation procedure can
be applied similarly except that the modified Green’s
function dp should be employed while the total charge is
expressed as

(8)

where C(m, n) is thé modified capacitance. To find the
proper capacitance C(m,n), the parameter a must be
solved. By the constraint (7), it is found that

Q= aé(m)-(Vn—a)

M
a= ). (D,/A)-V, )
n=1
where
M ~
D,= Y C(m,n)
m=1
and

. M
A= C(m,n)= Y D,.

1

Mk
H

n=1 1

Substituting (9) into (8), the short-circuit capacitance per
period is

C(m,n)=C(m,n)— (D, -D,)/A. (10)

Similarly, the two-terminal capacitance C,(m,n) per
period can be obtained from C(m, n) by (3). It is noted
that the diagonal term C,(m, m) is always zero for peri-
odic structures.

Since the summation term in the bracket of (5) has a
1/k? dependence for large k, the series Gp converges but
still slowly. A rough estimate shows that about 100 terms
are required to converge the result into a relative error of
1074 To speed up the rate of convergence, the summation
term in the bracket of (5) can be expressed as

Go(r,r)=G(r,r'+kp?)+G(r, v —kp2)— (2mekp) ™"
={3[(r- r)-2]7—|r - r’|2}/47r€k3p3 +R. (11)

Here, the remainder R converges much faster since it has a
1/k> dependence for large k. The series of the first term
on the right-hand side of (11), which, however, is slowly
convergent, can be evaluated exactly since

© 1
Y Pl ={,=1.2020563 - - ..
k=1
By this simplification, it is noted that the same conver-
gence error of 10”4 can usually be achieved in about ten
terms.

I11.

The even- and odd-mode decomposition techniques are
generalized in this section to ease the capacitance calcula-
tions for multiconductor structures which contain s (s =1,
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Fig. 2. A typical structure symmetric with respect to the x=0 and
y =0 planes. Here, conductors 3 and 4 are cross-symmetric, while
conductors 1 and 2 are open-symmetric.

2, or 3) orthogonal planes of symmetry. First, consider the
simplest case, where the structure has one plane of symme-
try, say the y = 0 plane. As shown in Fig. 2, there are four
conductors in the region y > 0. The conductors which are
shorted with their image counterparts in the y <0 region
are called cross-symmetric conductors, e.g., conductors 3
and 4 in Fig. 2. Those which are separate from their image
counterparts, e.g., conductors 1 and 2 in Fig. 2, are called
open-symmetric conductors.

To be more general, assume there are K conductors in
the region y>0. The open-symmetric conductors are
numbered as the first L conductors, denoted as conductor
i, in the y>0 region and conductor i_ in the y <0
region (i =1,2,- -+, L). While the cross-symmetric conduc-
tors are numbered as the (L +1)st, (L +2)nd, ---, Kth
conductors. In fact, there are L + K conductors in the
whole space. However, by means of the modal decomposi-
tion technique, only the capacitances between the K con-
ductors in y > 0 region need be solved to find the capaci-
tances between all these K + L conductors.

To facilitate the analysis, let us define three vectors for
the total charges, ie., Q[0 ,Q,, ", 0, ] and Q_=
[0,,Q, ., --.0Q; ] for the open-symmetric conductors in
the y>0 and y <0 regions, respectively; in addition,
0.=[Q;:1:09142 Q] for the cross-symmetric con-
ductors. Accordingly, the voltages imposed on all the con-
ductors are grouped into three voltage vectors: V., V_,
and V.. Then, the desired short-circuit capacitance matrix
can be written as

Q. 5++ E—f—c 6+— V.,
Q‘ = a+ ac' _C—_L— VC (12)
-1 1é, c. c_ |

where, due to symmetry, the partitioned capacitance
matrices should _satisfy C,,=C C..=C_.=C, =
C_,and C,_=C_,.

When the imposed voltage distribution is even-symmet-
ric, i.e., ¥V, =V _, the charge distribution is even-symmet-

——
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ric also, i.e., @, = Q . Only the unknown charge density
in the y > 0 region is necessary since the charge density on
the image counterparts in the y < 0 region is the same. The
governing integral equation is thus similar to (1) except
that the Green’s function G(r, #’) is replaced by

G,(r,r)=G(r,r)+G(r,r) (13)

where r’ is the image of r’ with respect to the plane of
symmetry. For example, ¢’ = (x, — y, z) when r'= (x, y, 2)
and the y =0 plane is the plane of symmetry. Note that
only the structure in the y > 0 region is required; i.e., both
r and " are in the y > 0 region.

The charge density in the y >0 region and thus the
short-circuit capacitance matrix can be obtained following
a similar solution procedure in deriving (2). Since the
charge and voltage distributions are even-symmetric in this
case, the matrix can be called the even-mode short-circuit
capacitance matrix. By the relations that V, =¥_ and

Q. = Q_, this matrix can also be expressed from (12) as
[Q+ }= €+++€+— 6+c ‘[V+}={E]_|:V+}
QC/Z E-%-c C_‘cc/z I/c ’ VC

(14)

Here, the vector @, is divided by two since the charge in
the y > 0 region is half of that in the whole region for
cross-symmetric conductors.

Similarly, each conductor and its image counterpart
have opposite charge distributions, i.e., @_ = —Q .. when
the imposed voltages are opposite, i.e.,, ¥_=—V_. Here,
the plane of symmetry is equivalent to a grounded plane,
which implies that all the cross-symmetric conductors are
grounded, i.e., ¥, = 0. The solution approach is the same as
that for the even-symmetric case except that the Green’s
function now becomes

G, (r. 1) =G(r.r)=G(r.r). (15)

Here, the subscript o stands for the odd-symmetric case, in
contrast to the subscript ¢ in (13) for the even-symmetric
case.

The resultant matrix is now called the odd-mode short-
circuit capacitance matrix, which can be expressed as

(Q+):(C:++ C+—)‘(V+):(a))'(V+)~ (16)

Here, the relations V_=-V_, Q0_=-0Q,, and ¥, =0 are
substituted into (12).

By choosing the suitable Green’s functions (13) and (15).
only the unknown charge density in the y > 0 region is
required to obtain (14) and (16), respectively. However, the
whole short-circuit capacitance matrix in (12) can be
achieved accordingly. Let C.(i, j) and C,(i, j) be the
even- and odd-mode capacitances between two conductors
i and j in the y > 0 region. The equivalent capacitances in
the whole space can be solved as follows. When both
conductors / and j are cross-symmetric,

C(. j) =2C.(i. ). (17a)
When one conductor, say the ith, is cross-symmetric while
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the other, say the jth, is open-symmetric,
C(le]+):C(1’]—) :Ce(l9j)

When both conductors i and j are open-symmetric,
Cliv, 1) =Clin,jo) =[G 1)+ G ]2
Clioy ju) =Cliv, j_) =[C(i, )= C (i D] 2. (17c)
This approach can be extended for the structures with

two or three orthogonal planes of symmetry. The basic

algorithm can be briefly described by a simple structure
with two orthogonal planes of symmetry, say, the x =0
and y = 0 planes. By first assuming that the x = 0 plane is
even-symmetric, the structure of interest is in the haif-space
with x > 0. Now, the y = 0 plane is the plane of symmetry
in the “new” half-space. The aforementioned modal de-
composition technique can be applied similarly except
that the Green’s function G(r, #’) should be substituted
by the Green’s function in the “new” half-space, ie.,

G(x,y,z; x', ¥, 2+ G(x, y, z; — x’, y', z'). By solving the

unknown charge density for the two cases where the y =0

plane is even- and odd-symmetric, the resultant short-cir-
cuit capacitance matrix in the “new” half-space can be
obtained by employing relation (17). This matrix is now

the even-mode capacitance matrix C, with respect to the
x =0 plane in the original whole space.

Similarly, the odd-mode capacitance matrix C can be
obtained by first assuming that the x =0 plane is odd-
symmetric. By applying (17) again, the desired short-cir-
cuit capacitance matrix can be obtained from C and C It
is noted that this approach requires only the charge density
in the x > 0 and y > 0 region, which means one quarter of
the original total unknowns. However, four cases must be
solved, corresponding to the assumptions that each of the
x =0 and y =0 planes is either even- or odd-symmetric.

Roughly speaking, the numerical solution for a matrix
equation of N unknowns calls for N*/2 memory storage.
The computation time, if taking into account the computa-
tion of matrix elements, is proportional to NY(2 <y < 3).
For cases with small N, y =2 since the computation of
matrix elements dominates; while y=3 for cases with
large N whence the solution of matrix equation dominates.
Hence this approach, when applied to structures with two
orthogonal planes of symmetry, reduces the number of
unknowns by a factor of 4, and thus the memory storage
by 16. Since it is usually necessary to solve four cases,
corresponding to different assumptions on the x =0 and
y =0 planes, the computation time to obtain the final
C(m,n) in the whole space is reduced by a factor of
(16-64)+4 = 4-16.

For structures with three orthogonal planes of symme-
try, the solution approach is similar. The reduction in
computation cost, however, is tremendous, i.e., 64 times in
memory storage and 8-64 times in computation time.

(17b)

IV. SoLUTION APPROACH

Regardless of whether the structure is periodic. symmet-
ric, or neither, the capacitance calculation requires a solu-
tion of the unknown surface charge density from the
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integral equation like (1), and then a relation in terms of
short-circuit capacitances like (2). The basic procedure and
some related numerical considerations are briefly de-
scribed as follows. First, each conductor is divided into
small cells. The surface charge density may be different
from one cell to another but is assumed to be a constant
inside the same cell. Theoretically, a better solution will be
achieved by a finer discretization. However, it is always
accompanied by an enormous increase in the number of
unknowns and thus the computation cost. A good al-
gorithm which can achieve reasonable accuracy with the
least discretization is desired.

Let the surface of the mth conductor, S,,, be partitioned
into N, cells, i.e., Sm,( j=12,---,N,). Denoting by D,
the unknown total charge on the cell S, , the integral
equation (1) becomes

% f(‘sl‘f G(r, r)dr)qm—-V(r) v,

forres, (18)

where [, | denotes the area of the cell S, . It is noted that
the Green’s function here should be replaced by G for
periodic structures and by G, or G, for symmetric struc—
tures.

It is crucial to calculate the integral in (18) accurately
and efficiently. The closed-form formula has been derived
for the cells with rectangular [3] or triangular [6] shape.
The triangular cell is more general in modeling arbitrary
geometry, but the involved computation is more time-con-
suming. For practical packaging structures, rectangular
cells suit as well [4], [S] and are employed here.

Two methods have been proposed to solve the un-
knowns Im, in (18). The simpler, collocation method [3],
[6] matches (18) at the center of each cell, while the
Galerkin method [4] matches the average of (18) inside the
same cell. It can be shown that the Galerkin method
achieves a variational solution [10]; i.e., a first-order error
of charge distribution results in a much smaller second-
order error of resultant capacitances. Hence, though with a
little extra computation complexity, the Galerkin method
usually achieves much better solutions.

Applying Galerkin’s method to the integral in (18) cell
by cell, we can achieve a system of simultaneous linear
equations for unknown charges Dm,» ie.,

M N,
E: 2: I;m@'qm =V,
m=1 ;=1
i=1,2,---.N,

n=1,2,---.M (19)

where

1
—— - ! ’
P, AR fS"‘j;mIG(r, r')drdr’.
It is noted by inspection that the coefficient matrix com-
posed of P, is symmetric, which makes the solution of
matrix equauon (19) easier.
A closed-form formula for the coefficient P, , can be
derived when the two rectangular cells S, and S are
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either parallel or orthogonal [4]. It may happen in practical
structures that the orientation between some cells is neither
parallel nor orthogonal. For example, the two cells along
the periphery of a circular cylinder always have more
general orientations. In those cases, the inner integral is
evaluated by the closed-form expression while the outer
integral is approximated by the Gaussian quadrature. A
higher order quadrature formula should be employed to
ensure accuracy for very close cells. In most cases where
the cells are not very close, a rough formula which requlres
less computation is sufficient.

A Fortran program is thus implemented on the
IBM /3090 mainframe computer 1o calculate the capaci-
tances for three-dimensional multiconductor systems. To
divide the conductor surfaces into rectangular cells, the
program first requests a data input for the conductor
geometries and the discretization sizes. Many complicated
geometries can be partitioned into several rectangular basic
boxes. It is thus easier to specify the geometries by de-
fining the coordinates of the boxes and specifying that the
surfaces joining two boxes are charge-free [5]. If a surface
includes the edge, a nonuniform dvision should be chosen
to achieve a good accuracy [4].

For periodic and/or symmetric structures, the data in-
put for conductor geometry is greatly simplified since only
part of the whole structure is actually required in solution.
When the structure is periodic, the program requests only
the part of geometry in one period of the structure instead
of the whole geometry in many periods. For symmetric
structures with s planes of symmetry (s =1, 2, or 3), only
1/2° of the whole geometry is necessary.

The Galerkin method is then applied to obtain a matrix
equation, which is solved by the Gaussian elimination
method to find the unknown charge density and thus the
capacitances as expressed in (2). If the system has periodic-
ity or symmetry, the simplifications described in Section I1
or TII should be imposed on these capacitances to obtain
the desired capacitances.

V. NUMERICAL EXAMPLES

To demonstrate the significant features of this program,
several examples are presented in this section. The first
example considers the average capacitance per centimeter
in a coaxial transmission line where the two conductors
have a radius ratio of two and the inside region is free
space. This example is chosen because its solution is well
known, enabling us to gain insight into the rate of conver-
gence and the necessity of the proposed simplification for
periodic structures.

To analyze this simple structure, one may assume that
the cable is of finite length and employs the conventional
three-dimensional capacitance calculation. Shown in Fig. 3
is the resultant average capacitance per centimeter versus
the length of the coaxial cable. As the length increases, it
tends to the exact two-dimensional capacitance, which, as
shown by the dotted line in the figure, is 27e /In2 =
0.80262 - - - pF/cm. However, the rate of convergence is
rather slow. The relative error is still greater than 3 per-
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Fig. 3. Average capacitance per centimeter versus length for a coaxial

cable. Dotted curve denotes the exact result as the length tends to
infinity.

cent, even when the ratio of length to outer radius is as
large as 10.

It is noted that any two-dimensional structure is peri-
odic along the third dimension with a period p, which can
be assumed to have any positive value. Hence, one may
also- employ the three-dimensional method together with
the periodicity simplification to handle two-dimensional
capacitance calculations. By arbitrarily choosing a period,
say p =2, the program obtains the result 0.80259 pF /cm,
which is very close to the exact solution. This at least
validates the simplification algorithm proposed here for
periodic structures.

As shown in Fig. 3, the discrepancy between the finite-
length and the infinite-length results depends on the ratio
of the longitudinal length to the transversal size. Since a
two-dimensional transmission line can be considered a
periodic structure with arbitrary period, the number of
periods inside a fixed length being arbitrary. Therefore, it
is very difficult for the truncation approach [8] to achieve a
meaningful criterion for a number of periods which will be
sufficient to ensure a convergent result. The modified
Green’s function together with the associated algorithm
proposed here includes the effects from all the periods and
thus can always achieve better results.

The second example considers a symmetric structure
with eight cubic conductors of size 1 cm centered at
(xg, Yo» Zo) in free space where x,, 3, and z, are either
+1 or —1 cm. The surfaces of the conductors are parallel
to the coordinate axes. Therefore, the structure has three
planes of symmetry. By exploring the structure symmetry,
only the structure in one eighth of the whole space, i.e., the
conductor centered at (1,1,1), is required in the solution.
When all three planes of symmetry are assumed even-sym-
metric, the resultant even-mode capacitance is 0.2645 pF.
Similarly, when two, one, or none of the three planes are
even-symmetric, the capacitances are, respectively, 0.8647,
1.201, and 1.417 pF. By relations (17) and (3), the two-
terminal capacitances between all eight conductors can be
obtained. The self-capacitance is 0.2645 pF, while the
mutual capacitances between adjacent, face-diagonal, and
cube-diagonal conductors are 0.1860, 0.04804, and 0.01790
pF, respectively. Here, each side of the conductor is di-
vided into four segments; i.e., the number of unknowns is
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Fig. 4. A practical packaging structure consisting of via conductor,
mesh planes, and x and y lines. (a) Top view. (b) Side view.

6 X4 X4 =96. The computation time required to find the
final solution is about 7 seconds.

On the other hand, the same program is also employed
to solve the original structure without utilizing the struc-
ture symmetry. Keeping the same discretization size, the
two-terminal capacitances between all eight conductors are
exactly the same as those obtained before. This again
validates the suitability of the proposed simplification al-
gorithm for symmetric structures. However, the number of
unknowns is 768 while the computation time is 144 sec-
onds now. This means that exploiting structure symmetry
here can result in a reduction in memory storage and
computation time by 64 and 20 times, respectively.

Finally, consider a practical packaging structure made
of multilayer ceramic for high-performance computers [11].
The structure includes many perforated mesh planes inside
which the x- and y-directed lines are designed for the
signal transmission between integrated-circuit chips. In
addition, many via conductors are built through the holes
in mesh planes to serve as the z-directed signal or power
connection between different layers.

For practical computer systems where the rise time of
the signal is about 1 ns, the structure size is much smaller
than the signal wavelength of interest. Some characteris-
tics, e.g., the impedance of a via conductor and the loading
effect of the x and y lines, are reflected from the average
capacitance between the via conductor and the grounded
mesh planes. To analyze this problem, we consider a
simplified structure as shown in Fig. 4 where (a) is the top
view and (b) is the side view. The structure is assumed to
be periodic in the z direction but truncated in the trans-
verse direction. The mesh planes and x and y lines are
shorted together and considered as the ground. The rela-
tive dielectric constant of the surrounding material is 9.4.

Since the structure is periodic in the z direction as well
as symmetric with respect to both the x=0 and y=0
planes, we only need to solve the one-period structure in
the x > 0 and y > 0 region, which is modeled by 256 cells
as shown in Fig. 5. The via capacitance can now be
obtained directly from the even-mode capacitance since
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Fig. 6. Average capacitance between via conductor and mesh plane
versus via conductor radius. Solid and dotted curves correspond to the
cases where the x and y lines are absent and present, respectively.
Triangular marks denote the measurement results.

both the conductors are cross-symmetric. The via capaci-
tance versus the via conductor radius is shown by the
dotted curve in Fig. 6, for which the computation time is
about 44 seconds for a radius. As the radius increases, the
distance between via conductor and mesh planes decreases
and thus the capacitance increases significantly.

It is well known that the capacitance per unit length
remains invariant when the structure is scaled by a con-
stant factor. Based on this idea, a 150 X scaled test vehicle
including M periods (M < 7) was constructed to measure
the capacitance of a via conductor with respect to the
grounded mesh planes and x and y lines. To cancel the
edge effect from both ends due to finite M periods, two
measurements with different M’s, say M =7 and M =35,
are executed and subtracted to give the average capaci-
tance per unit length [12]. The results are shown by the
triangular marks in the figure. It is found that the compu-
tational and experimental results compare favorably.

Now, consider the via capacitance without the loading
effect of the x and y lines. When the x and y lines are
absent, the structure is symmetric along the z direction
also. Then, only the half-period in the z > 0 region need be
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modeled. The number of unknowns is reduced to 92 and

. the computation time to 7 seconds. The resultant via

capacitance is shown by the solid curve in Fig, 6, which is
again consistent with the measurements. As compared with
the case when the x and y lines are present, the via
capacitance is reduced more significantly for larger via
conductor radius. The relative reduction is 10 percent
when the radius ratio is 0.1, while it becomes 40 percent
when the radius ratio is increased to 0.85.

VI. CONCLUSIONS AND DISCUSSIONS

A novel approach characterized by its capability to
utilize structure periodicity and symmetry is proposed to
deal with the capacitance calculations for three-dimen-
sional multiconductor systems. The modified Green’s func-
tion is proposed to circumvent the singularity due to
infinite periods. In the meantime, it is shown that the sum
of total charges in a periodic structure should be zero. By
this approach, only the conductor geometry in one period
of the structure need be modeled and solved while the
effects from all the periods are included properly.

On the other hand, the idea of the modal decomposition
technique is extended for multiconductor structures with
several orthogonal planes of symmetry. Corresponding to
each plane of symmetry, the structure is halved to find
even- and odd-mode capacitances by assuming that the
voltage and charge distributions in two half-spaces are
even- and odd-symmetric, respectively. A general al-
gorithm relating the original capacitances to the even- and
odd-mode capacitances is derived for the multiconductor
cases. For structures with several planes of symmetry, the
procedure can be applied directly by repeating the al-
gorithm several times. The geometry is easier to specify in
data input and the computation cost is greatly reduced. In
addition, fewer unknowns and thus fewer operations are
involved, so that the roundoff error during numerical
computation is reduced.

Combined with the two simplification algorithms for
periodic and symmetric structures, the program is very

- general for analyzing the capacitances for practical packag-

ing structures, such as the capacitance between two perfo-
rated mesh planes and the capacitance between two signal
lines in the presence of mesh planes and crossing lines.
However, it cannot handle structures with inhomogeneous
material in its present form. In those cases, the material
can be replaced with free space by placing unknown charges
along the material boundary [7], but the simplification
formula for periodic structures should be modified slightly.

It should be emphasized that in this paper the conduc-
tors in different periods for periodic structures are as-
sumed shorted together; ie., the voltage distribution is
identical for all the periods. It is not uncommon for the
conductors in different periods to be discrete and to have
different voltages imposed. In those cases, it is sometimes
important to calculate the capacitances between two con-
ductors in different periods. A novel method to solve this
difficulty is in progress and will be presented in the near
future.
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